
HTTP/HTTPS Library for Palm OS

Version 1.3.2
Copyright © 2003-2006 PDADevelopers.com

HTTP/HTTPS Library for Palm OS Page 2

HTTP/HTTPS Library for Palm OS
Table of Contents

Introduction______________________________________ 3

Features___ 3

General Notes ____________________________________ 3

Tutorial__ 4
Step By Step example __ 4

Establishing a Secure Connection _____________________ 5

Frequently Asked Questions (FAQ) ____________________ 6
Default Headers ___ 6
Maintaining open the connection with the web server ____________________ 6
Automatic Redirection __ 6
Implemented Verbs __ 6
Simulating Specific Browsers Headers ________________________________ 6
Managing timeouts___ 6
Library Size __ 7

Reference__ 7
HTTPConnection Object ___ 7
HTTPRequest Object__ 8
HTTPResponse Object __ 8

TABLES__ 9
Response Codes___ 9
VERBS __ 9
ERROR Codes___ 9

Purchasing the source code_________________________ 10
Revision History__________________________________ 11

HTTP/HTTPS Library for Palm OS Page 3

Introduction
This library is an implementation of a subset of W3C specs for HTTP protocol. It’s
packed as a library file with C++ headers, so you can include it in your own
programs simply linking it into them. It runs on ANY Palm OS device running Palm
OS version 3.0 and higher (not only on Palm VII).

Features
- Provides HTTP/HTTPS client protocol on top of the standard Palm socket library.
- Easy to use, extensible C++ classes: functions as simple as connect(), execute

request(), get response(), disconnect(), etc.
- Provides control for getting HTTP headers and cookies management.

General Notes
You can use the library for requesting information from existing web servers, and
then parse the results. You can even use it for integrate your programs with
existing Web Services.

An HTTP server (usually called Web Server) hosts resources (i.e. files, like HTML
files, images, etc.) that can be accessed by an URL (Uniform Resource Locator).
The HTTP library can be used to convert your program into an HTTP client that
can retrieve those resources from HTTP servers into a local buffer. Then your
program can manage the resources contained in your buffer to do whatever is
necessary to be done (save to a file, parse a text, show information to the user,
etc.)

HTTP/HTTPS Library for Palm OS Page 4

Tutorial

Step By Step example

Step 1: Create an HTTP Connection Object
The HTTPConnection object holds de socket connection with your web server.
Depending on the headers setting and/or the web server behavior, the socket
connection is maintained or released after retrieving the resource from the
server.

HTTPConnection *cnn = new HTTPConnection(40960, 10240);

The value 40960 indicates the buffer size in bytes, this is the max resource/file
size can be retrieved in a single request. This value can range between 1 byte to
slightly less than 64K.
The value 10240 indicates the output buffer size in bytes.

Step 2: Create an HTTP Request
After you established the connection, you can create an HTTP Request based on
that connection. The HTTPRequest object will carry the full URL for getting the
resource, request headers, cookies, etc.

HTTPRequest *req = new HTTPRequest(cnn);

Step 3: Fill the HTTPRequest object and executing the Request
There are two ways for filling the values in an HTTPRequest object. The first
approach, a simpler one, enables you to leave all properties to the default value
and execute the request in the same step. The following code illustrates this
situation:

responseCode = req->execute(httpGet, “www.palmone.com”, NULL);

In this single step, the routine:

1) Assumes the domain and resource name (path + file name) by parsing the
URL.

2) Specifies GET as the verb to be used.
3) Effectively executes the request to the server.

The other way to fill the HTTPRequest object and execute the request is to
manually fill the verb, domain, path and headers. This gives you a better control
on how the request will be executed. This is definitively the way to go when you
are passing parameters in the URL, like when invoking FORM result, calling
WebService, etc. The following code illustrates this:

// Set the Verb
req->verb = httpGet;

// Set the domain and path of the resource
req->domain.set("www.palmone.com");
req->path.set("/pda/getImage.asp?ID=101");

// Modify the default headers (optional)
req->getHeaders()->remove("Connection");
req->getHeaders()->remove("Accept");
req->getHeaders()->remove("User-Agent");

HTTP/HTTPS Library for Palm OS Page 5

// Execute the Request
responseCode = req->execute();

Step 4: Process the HTTP Response
Once the HTTPRequest has been executed, you will receive the reply from the
web server or an error condition. The error can be checked by calling req-
>getLastError(). A zero value indicates no error.
Your program can retrieve the Response information by accessing the
HTTPResponse object contained in the executes HTTPRequest:

// Get resource content
content = req->getResponse()->getContent();

//Get content-length header (Not available if transfer-coding: chunked)
contentL = req->getResponse()->getContentLength();

Please note that the library can calculate the Content Length value in two
different ways:

1) If the Response includes a Content-Length header, then this value is
returned.

2) If no Content-Length header is specified in the Response, then the value is
calculated from the size of the Content itself.

Step 5: Release the objects
Finally, don’t forget to release the object. You can release the HTTPRequest and
maintain the HTTPConnection, if the server keeps it alive, or release both:

delete req;
delete cnn;

Establishing a Secure Connection
HTTP works fine in most uses, but there is a drawback: data is sent in clear text.
Using any sniffer available in the market you can read the information contained
in the request and response message flow. In order to improve security, HTTPS
protocol was developed.

HTTPS protocol is a version of HTTP that runs on top of Secure Socket Layer
(SSL). SSL was implemented in the core of Palm OS after OS version 5.0. Using
this layer the HTTP connection can be established over a secure channel. For
further information on SSL, check RFC 2246.

The steps to use HTTPS instead of HTTP are EXTREMELLY simple. You just need to
use the HTTPSConnection (with ‘s’) object instead of HTTPConnection. That is,
assuming the example shown in the previous chapter, replace step 1 with this:

HTTPSConnection *cnn = new HTTPSConnection(40960, 10240);

All other management of the SSL connection, in addition to certificates
management et al, are automatically handled by Palm operating system.
Please note that HTTPS can only be used with Palm OS 5.0 and above.

HTTP/HTTPS Library for Palm OS Page 6

Frequently Asked Questions (FAQ)

Default Headers
In order to ease the creation of the HTTPRequest we include five default headers
that are used in mostly all typical requests. Here is the list of default headers:

headers->setValue("Accept", "text/html, text/xml, */*");
headers->setValue("User-Agent", USER_AGENT);
headers->setValue("Connection","Keep-Alive");
headers->setValue("Content-Type", "text/html; charset=ISO-8859-4");

headers->setValue("Content-Length", IToA(StrLen(m_request->data)));

In case your application does not need these headers, you can remove or replace
them after creating the object and before executing the request.

Maintaining open the connection with the web server
Closing the socket connection after a response to a GET command is sent is the
usual behavior on most web servers. Some web servers admit a special header to
keep the connection open, improving performance. In order to maintain the
connection opened with your server, you must set the HTTPRequest header
"Connection=Keep-Alive":

req->getHeaders()->setValue("Connection", " Keep-alive");

Automatic Redirection
Automatic Redirection is a special feature present in most Web Browsers that
allows redirecting one resource to another. It is managed with a special Return
Code = 302. As this is application-specific behavior (not all applications may like
to get redirected automatically) it must be handled by the application itself: the
library does not handle it automatically.

Implemented Verbs
GET, POST, PUT, DELETE, HEADER.

Simulating Specific Browsers Headers
You can simulate a specific browser by adding the “User-Agent” header to your
request. Here’s an example:

req->getHeaders()->setValue("User-Agent",
" Mozilla/4.0 (compatible; MSIE 6.0; Windows NT 5.0)");

Search Google for other browser’s strings

Managing timeouts
When handling large responses on slow web servers or under heavy traffic, you
may need to increase the receive timeout. You can do that by calling the
setTimeOut function:

HTTPConnection::setTimeOut(int timeOut)

timeOut = Maximum timeout in system ticks; -1 means wait forever.

HTTP/HTTPS Library for Palm OS Page 7

Library Size
The library size is about 100Kb.

Reference

HTTPConnection Object
HTTPConnection::HTTPConnection(

unsigned short inBufferSize = INPUT_BUFFER_SIZE,
 unsigned short outBufferSize = OUTPUT_BUFFER_SIZE);
Creates a new HTTPConnection object. Prepares buffer and internal HTTPRequest
/ HTTPResponse objects. Enables connection for an upcoming request.

HTTPRequest* HTTPConnection::getRequest();
void HTTPConnection::setRequest(HTTPRequest* req);
Gets/sets the HTTPRequest object. Typically you only need to retrieve the internal
HTTPRequest object, previously from executing the request.

void HTTPConnection::HTTPResponse* getResponse();
void HTTPConnection::setResponse(HTTPResponse *resp);
Gets/sets the HTTPResponse object. Typically you only need to retrieve the
internal HTTPResponse object, once the request has been executed.

short HTTPConnection::getTimeOut();
void HTTPConnection::setTimeOut(unsigned short timeOut);
Gets/sets the current request retrieval timeout, expressed in system ticks. This
timeout applies to the initial connection and to every request to the server. If the
HTTP server does not send any data to the client for more than timeOut ticks,
then a timeout occurs.

HTTPCookies* HTTPConnection::getCookies();
Retrieves the cookies collection. This collection is maintained during the
connection lifetime.

bool HTTPConnection::parseURL(char* url,

CMKString* domainName,
short *port,
CMKString* path,
CMKString* fileName,
CMKString* queryString);

Prepares the internal HTTPRequest object with this information.

short HTTPConnection::executeRequest(CMKString*
pLastStringSend = NULL);
Executes the current request. If pLastStringSend is present it returns the last
string send to server.

bool HTTPConnection::connected();
Indicates if the connection established with the server is alive.

bool HTTPConnection::connect();
bool HTTPConnection::connect(char *domain, unsigned short
port);

HTTP/HTTPS Library for Palm OS Page 8

void HTTPConnection::disconnect();
Manually connects to/disconnects from the web server.

HTTPRequest Object
HTTPRequest::HTTPRequest();
HTTPRequest::HTTPRequest(HTTPConnection *connection);
Creates a new object, with or without HTTPConnection associated.

HTTPRequestType HTTPRequest::verb;
CMKString HTTPRequest::domain;
short HTTPRequest::port;
CMKString HTTPRequest::path;
CMKString HTTPRequest::fileName;
CMKString HTTPRequest::queryString;
CMKString HTTPRequest::data;
Assessors to verb, domain, port path, filename, query string and additional data.

HTTPHeaders * HTTPRequest::getHeaders();
Retrieve Headers collection.

short HTTPRequest::execute();
Execute a previously defined HTTPRequest. Must have an associated
HTTPConnection object.

short HTTPRequest::execute(HTTPRequestType verb,

char* url,
char *data = NULL);

Creates a new HTTPRequest, doing a simple parser on the URL, and executes it.
It must have an associated HTTPConnection object.

void HTTPRequest::setAuthorization(char* user, char* pass);
Sets user/password for the request, if requested by the server.

void HTTPRequest::GetLastStringSendToServer(CMKString&
rMKString)
Returns the last string sent to the server.

HTTPResponse Object
HTTPResponse::HTTPResponse(HTTPRequest* request);
Creates a new response object, initializing the pairing request.

unsigned short HTTPResponse::responseCode;
Returns the return code from the previous request.

unsigned short HTTPResponse::getContentLength();
Gets the content length received from the previous request. Content Length value
can be calculated in two different ways:

1. If the Response includes a Content-Length header, then this value is
returned.

2. If no Content-Length header is specified in the Response, then the value is
calculated from the size of the Content itself.

HTTP/HTTPS Library for Palm OS Page 9

char* HTTPResponse::getContent();
Returns a pointer to the received data from the previous request execution.

void HTTPResponse::setResponseBuffer(char* buffer);
Sets the response buffer pointer.

void HTTPResponse::clearResponseObject();
Clears the object.

TABLES

Response Codes

RESPONSE CODE Value
rcContinue 100
rcOK 200
rcCreated 201
rcAccepted 202
rcNoContent 204
rcMultiple 300
rcMovedPermanently 301
rcMovedTemporarily 302
rcNotModified 304
rcBadRequest 400
rcUnauthorized 401
rcForbidden 403
rcNotFound 404
rcInternalServerError 500
rcNotImplemented 501
rcBadGateway 502
rcServiceUnavailable 503

VERBS
enum HTTPRequestType {
 httpGet,
 httpPost,
 httpPut,
 httpDelete,
 httpHeader
};

ERROR Codes

Error Code Value
errSocketNotSet 1000
errSocketAlreadyConnected 1001
errSocketNoConnected 1002
errSocketError 1003

HTTP/HTTPS Library for Palm OS Page 10

Purchasing the source code
If you are interested in purchasing the library source code, please contact
sales@pdadevelopers.com for more information.

HTTP/HTTPS Library for Palm OS Page 11

Revision History
Version 1.0
Initial Version.

Version 1.0.4
Fixed: duplicated error code in HTTPConnection.h. Other minor issues.

Versión 1.0.5
Improved timeout support. Other code enhancements.

Version 1.1
First version including HTTPS.

Version 1.1.2
Header files improved in order to allow compiling separated project (secure and
not secure).

Version 1.2
Solved problem regarding socket reuse when reaching 16 connections.

Version 1.2.1
Improved documentation (this manual).

Version 1.2.5
New version allowing user to set output buffer size.

Version 1.2.6
Improved end of reception detection: header “Accept-Encoding:identity” included
by default.

Version 1.2.7
New function in class HTTPResponse: HTTPHeaders* getHeaders().
New Targets: Expanded Mode (A4/A5-relative data) and Expanded with A5-based
Jumptable.

Version 1.2.8
Fixed: parser error in URL with parameters in function: “short
execute(HTTPRequestType verb, char* url, char *data = NULL)” (Example:
www.alerts.com/sky.asp?root=125).

Version 1.2.9
Fixed: error detected when using one connection and executing multiple requests.

Version 1.3.0
Fixed: Time Out error when using secure connections (HTTPS), it didn’t wait for
server’s answer.

Version 1.3.1
Fixed: error reported in HTTPS when using one connection and executing multiple
requests.

Version 1.3.2
New Targets: 4 byte “int”.

HTTP/HTTPS Library for Palm OS Page 12

This documentation is part of the HTTP/HTTPS Library for Palm OS, Version
1.3.2, which is a copyrighted product. All rights are reserved.

Copyright © 2003-2006 pdadevelopers.com

Check our website http://www.pdadevelopers.com for more information on
our products.

