
SBSH PocketWeather Custom Weather Feed Manual

SBSH PocketWeather
Custom Weather Feed Manual

For PocketWeather 2.3.0

By: Jenny Oliver

Last Updated: 16 June 2009

Downloads and additional support can be found at our site

http://www.sbsh.net

© All rights reserved, SBSH Mobile Software LTD 2002-2009 Page 1 of 32

http://www.sbsh.net/

SBSH PocketWeather Custom Weather Feed Manual

Table of Contents
Overview..3

Files and Folders...3
File Content...3

Custom Weather Feed Language Tutorial..4
main Function..6
Obtaining the Html Data From the URL Address..7
Extracting data from the Html Text...9
Selecting an Area of the HTML Data...10
Getting the Weather Forecast for Each Day..11
While Control Statement: ..12
If Control Statement: ...12
Adding the Obtained Variables into PocketWeather..12

Additional Examples ..13
Map Variables...13
Checking for Today’s Weather...13

User Reference Guide...14
Functions...14
Data Types...15
Variable Scope..16
Expressions..17
Statements..18
Comments...18
Stages of Execution of a CWF...19
Built-In Functions...19
Sky Conditions...28
SkyTextID Conditions Text...29

CWF Development Tool...31
Compilation..31
Debugging...32

© All rights reserved, SBSH Mobile Software LTD 2002-2009 Page 2 of 32

Overview
This manual describes the definition of PocketWeather custom weather feed (CWF) files. A CWF can be
created in order to obtain weather data from a specific web-site.

CWFs are defined using a simple structured language.

A tutorial example illustrates the usage of the CWF language. A user-reference guide explains the details
of each command in the CWF language. The final section introduces the PocketWeather CWF development
PC tool.

Files and Folders
PocketWeather custom weather feed files, must end with the “.CWF” file extension. These are simple
plain-text files which can be edited with your favourite text editor, such as Notepad. Although ANSI text
encoding is allowed, it is strongly recommended that UNICODE (big endian) encoding be used.

To install a new CWF file onto your device, simply copy the “.CWF” file into the “Templates” folder on your
device.

To make organisation of the files easier, it is recommended that new folders (or sub-folders) be added
under the “Templates” folder. For example, you could add a folder called “WeatherCom” under
“Templates”.

File Content
The CWF file contains a series of instructions or commands that tell PocketWeather how to extract data
from a given weather feed.

Custom Weather Feed Language Tutorial
The following is a tutorial walk-through of an example CWF definition. The CWF definition is for handling
forecasts provided by weather.com :

// CWF for 10 day forecast from weather.com
main
{
 pointer weatherTenDayStart
 {
 go_start;
 skip_to_text("new mpdFObj", true);
 skip_to_text(");", true);
 };
 pointer weatherTenDayEnd
 {
 skip_to_text("graphTrgs", true);
 };
 string DELIMITER = "', ";
 // downloading and parsing 10 days forecast
 {
 open_url(“http://www.weather.com/weather/mpdwcr/tenday?locid=” + CityCode +
 &channel=dailytraveler&datapoint=htempdp&adprodname=lap_travel_daily_main",
 "GET");
 skip_to_text("new mpdHeadObj(", true);
 skip_chars(DELIMITER);
 // temperature units
 begin_var;
 skip_to_chars("'");
 string tmprUnits = end_var;
 // wind speed units
 skip_to_text(",", true); skip_to_text(",", true); skip_chars(DELIMITER);
 begin_var;
 skip_to_chars("'");
 string windSpeedUnits = end_var;
 select_area(weatherTenDayStart, weatherTenDayEnd);
 string sky = ".";
 while (sky)
 {

sky = "";
// day of month
skip_to_text("new Date(", true);
skip_to_text(",", true); skip_to_text(",", true); skip_chars(DELIMITER);
begin_var;
skip_to_chars("'");
string dayOfMonth = end_var;
// temperature high
skip_to_text(")", true);
skip_to_text(",", true); skip_to_text(",", true); skip_chars(DELIMITER);
begin_var;
skip_to_chars("'");
string tmprHi = end_var;
// temperature low

skip_to_text(",", true); skip_chars(DELIMITER);
begin_var;
skip_to_chars("'");
string tmprLo = end_var;
// sky
skip_to_text(",", true); skip_to_text(",", true); skip_chars(DELIMITER);
begin_var;
skip_to_chars("'");
sky = end_var;
// wind speed
skip_to_text(",", true); skip_to_text(",", true); skip_chars(DELIMITER);
begin_var;
skip_to_chars("'");
string windSpeed = end_var;
// wind direction
skip_to_text(",", true); skip_to_text(",", true); skip_chars(DELIMITER);
begin_var;
skip_to_chars("'");
string windDirection = end_var;
// precipitation
skip_to_text(",", true); skip_chars(DELIMITER);
begin_var;
skip_to_chars("'");
string precipitation = end_var;
// humidity
skip_to_text(",", true); skip_chars(DELIMITER);
begin_var;
skip_to_chars("'");
string humidity = end_var;
if (sky)
{

 add_day;
}

 }
 }
}

main Function
The entire content of the CWF definition is inserted between the brackets: {} of the main function includ-
ing all variables and other functions.

main
{
}

Obtaining the Html Data From the URL Address
In order to download weather information from weather.com we need to provide the correct URL address
e.g.:

http://www.weather.com/weather/mpdwcr/tenday?locid=CityCode&channel=dailytraveler&data-
point=htempdp&adprodname=lap_travel_daily_main

Where CityCode is the code used to identify a specific location. The ICAO code for Littlehampton, UK is
UKXX0260:

http://www.weather.com/weather/mpdwcr/tenday?locid= UKXX0260 &channel=dailytraveler&data -
point=htempdp&adprodname=lap_travel_daily_main

If you follow this link you will get a weather forecast for Littlehampton from weather.com.

In this example, a correct address consists of three parts: a common part at the beginning and at the end
for all addresses, with a city code in between. We can insert the following line:

main
{
 ...
 open_url(“http://www.weather.com/weather/mpdwcr/tenday?locid=” + CityCode +
 &channel=dailytraveler&datapoint=htempdp&adprodname=lap_travel_daily_main",
 "GET");
 ...
}

The URL address is specified as an argument of the open_url function. The first argument of this function
is a string consisting of the initial common part of the address line, the CityCode, and a further common
part. CityCode is a predefined variable in PocketWeather. The strings are concatenated with a “+” oper-
ator. In some cases the address line can be more complicated. All functions, variables, and operators that
you will use for string handling are described in this manual.

The following is the HTML data found at the above URL address for Littlehampton:

mpdData['head']=new mpdHeadObj('F', 'mi', 'mph', 'in', 'in');
mpdData['loc']=new mpdLocObj('UKXX0260','1','','Littlehampton, United Kingdom',
new Date('2008','4','26','4','19','48'),'Local Time','','ENG','','','UK','United
Kingdom','England','','Littlehampton');
mpdData['dayf']=new mpdFObj('May 26, 4:19 AM Local Time',false);
mpdData['dayf'].day[0]=new mpdFDObj(new Date('2008','4','26','0','0','0'),
'Today','58','52','4','40','Heavy Rain','18','East Northeast','ENE','80', '85');
mpdData['dayf'].day[1]=new mpdFDObj(new Date('2008','4','27','0','0','0'),
'Tue','68','53','4','11','Light Rain / Fog','9','Northeast','NE','60', '78');
mpdData['dayf'].day[2]=new mpdFDObj(new Date('2008','4','28','0','0','0'),
'Wed','66','54','5','12','Rain','16','Southeast','SE','60', '83');
mpdData['dayf'].day[3]=new mpdFDObj(new Date('2008','4','29','0','0','0'),
'Thu','66','53','6','11','Few Showers','10','South Southwest','SSW','30', '75');
mpdData['dayf'].day[4]=new mpdFDObj(new Date('2008','4','30','0','0','0'),
'Fri','67','53','6','30','Partly Cloudy','8','West Southwest','WSW','20', '76');
mpdData['dayf'].day[5]=new mpdFDObj(new Date('2008','4','31','0','0','0'),
'Sat','66','52','6','30','Partly Cloudy','8','Northwest','NW','20', '77');
mpdData['dayf'].day[6]=new mpdFDObj(new Date('2008','5','1','0','0','0'),
'Sun','66','52','7','30','Partly Cloudy','8','Northwest','NW','0', '71');
mpdData['dayf'].day[7]=new mpdFDObj(new Date('2008','5','2','0','0','0'),
'Mon','66','52','6','30','Partly Cloudy','9','West','W','10', '73');
mpdData['dayf'].day[8]=new mpdFDObj(new Date('2008','5','3','0','0','0'),
'Tue','66','52','6','30','Partly Cloudy','9','East Southeast','ESE','10', '71');
mpdData['dayf'].day[9]=new mpdFDObj(new Date('2008','5','4','0','0','0'),
'Wed','N/A','N/A','N/A','-','N/A','N/A','N/A','N/A','N/A', 'N/A');
mpdErr=true;
mpdErrArray[mpdErrArray.length+1]='NO OR INVALID TRIGGER DATA IN REQUEST!!';
graphTrgs=[];
mpdErr=true;
mpdErrArray[mpdErrArray.length+1]='NO OR INVALID DATA IN REQUEST!';
mpdData['dayfgraph']=new mpdTGObj();
svrWxAlertMode=0;

http://www.weather.com/weather/mpdwcr/tenday?locid=UKXX0260&channel=dailytraveler&datapoint=htempdp&adprodname=lap_travel_daily_main
http://www.weather.com/weather/mpdwcr/tenday?locid=UKXX0260&channel=dailytraveler&datapoint=htempdp&adprodname=lap_travel_daily_main

svrWxAlertType='';
mpdData['nwswxalrt']=new Array();
mpdData['locvideo']=new
mpdLocalVideoObj('false','null','/multimedia/videoplayer.html?
collection=topstory&clip=365','Video');
mpdErr=true;
mpdErrArray[mpdErrArray.length+1]= 'INVALID ADLIST OBJECT!';

Extracting data from the Html Text
Before extracting the specific data for each day, first get some general data e.g. Temperature Units and
the Wind Speed Units:

The text at the start of the HTML data is:

mpdData['head']=new mpdHeadObj('F', 'mi', 'mph', 'in', 'in');

Declare a string variable called DELIMITER with the value “’,”:

 string DELIMITER = "', ";

Then skip to the text “new mpdHeadObj(” :

 skip_to_text("new mpdHeadObj(", true);

and skip over the characters defined in the string DELIMITER :

 skip_chars(DELIMITER);

This moves the cursor to the data: “F', 'mi', 'mph', 'in', 'in');”

We are now ready to extract the data for the Temperature units.

 // temperature units
 begin_var;
 skip_to_chars("'");
 string tmprUnits = end_var; // extracts tmprUnits=”F”

The begin_var function saves the current cursor position.

The skip_to_chars function moves the cursor to the next “’”.

The string variable tmprUnits is declared and is assigned a value using the end_var function.

The end_var function extracts the text between the cursor position saved by the begin_var function up
to the new current cursor position. Here, tmprUnits is assigned the value “F”.

This moves the cursor to the data: “', 'mi', 'mph', 'in', 'in');”
Similarly, the windSpeedUnits are assigned to “mph” by skipping to “,” twice, skipping over the char-
acters in the DELIMITER string and extracting the text up to the next “’”.

 // wind speed units
 skip_to_text(",", true); skip_to_text(",", true); skip_chars(DELIMITER);
 begin_var;
 skip_to_chars("'");
 string windSpeedUnits = end_var; // extracts windSpeedUnits=”mph”

Selecting an Area of the HTML Data
Once you have located the required URL address you are ready to examine the HTML data in more detail.
The HTML data may be very complex. We need to find the specific data that we are interested in. First of
all it may be helpful to select an important area of the data to analyse.

Let’s scan the obtained html file for Littlehampton. Open the Littlehampton forecast page following the
previously discussed link:

(http://www.weather.com/weather/mpdwcr/tenday?
locid=UKXX0260&channel=dailytraveler&datapoint=htempdp&adprodname=lap_travel_daily_main) and
ask your browser to show the document source. You will see the following html data:

We find that the weather data is contained between the text:

new mpdFObj(
and the next instance of the line:

graphTrgs
Now we can select the important area of data between these texts. This area can be selected by means of
select_area function. This function has two arguments of pointer type: the beginning and the end of
the data. Declare two new variables in our template and insert the select_area function as follows:

main
{
 pointer weatherTenDayStart
 {
 go_start;
 skip_to_text("new mpdFObj", true);
 skip_to_text(");", true);
 };
 pointer weatherTenDayEnd
 {
 skip_to_text("graphTrgs", true);
 };
 string DELIMITER = "', ";
 // downloading and parsing 10 days forecast
 {
 open_url(“http://www.weather.com/weather/mpdwcr/tenday?locid=” + CityCode +
 &channel=dailytraveler&datapoint=htempdp&adprodname=lap_travel_daily_main",
 "GET");
 ...
 select_area(weatherTenDayStart, weatherTenDayEnd);
 }
}

weatheTenDayStart: this variable of pointer type will put the cursor to the beginning of the important
area of the document.

weatherTenDayEnd: this variable of pointer type will put the cursor to the end of the important area of
the document.

go_start: this is a built-in function that puts the cursor at the beginning of a selected area, or, if no area
is yet selected, or a new area is being selected, puts the cursor at the very beginning of the document

skip_to_text this function looks for given text from the current cursor position. If the text is found then
the cursor moves to the end of the found fragment, otherwise the cursor doesn’t move.

select_area: this function selects the area of text in the document to parse. All subsequent statements
will operate within the selected area and never leave it. In this case this function selects the area between
the two pointers: weatheTenDayStart and weatherTenDayEnd, as set above.

These and other functions, variables, operators are described in detail in the reference section of this
manual.

Getting the Weather Forecast for Each Day
Now let’s focus on the selected area and try to parse the forecast data from it. We can note that each day
is represented with a repeatable block. Here is the data for the first day:

new Date('2008','4','26','0','0','0'),'Today','58','52','4','40','Heavy Rain','18','East
Northeast','ENE', '80','85');

The skip_to_text, skip_chars, skip_to_chars, begin_var and end_var functions are used as de-
scribed earlier to extract the data into string variables. These variables are required to provide the data
for the add_day function that will export the data to PocketWeather.

Follow the code through and see how the variables are assigned to the values shown in comments:

// day of month
skip_to_text("new Date(", true);
skip_to_text(",", true); skip_to_text(",", true); skip_chars(DELIMITER);
begin_var;
skip_to_chars("'");
string dayOfMonth = end_var; // extracts dayOfMonth=”26”
// temperature high
skip_to_text(")", true);
skip_to_text(",", true); skip_to_text(",", true); skip_chars(DELIMITER);
begin_var;
skip_to_chars("'");
string tmprHi = end_var; // extracts tmprHi=”58”
// temperature low
skip_to_text(",", true); skip_chars(DELIMITER);
begin_var;
skip_to_chars("'");
string tmprLo = end_var; // extracts tmprLo=”52”
// sky
skip_to_text(",", true); skip_to_text(",", true); skip_chars(DELIMITER);
begin_var;
skip_to_chars("'");
sky = end_var; // extracts sky=”Heavy Rain”
// wind speed
skip_to_text(",", true); skip_to_text(",", true); skip_chars(DELIMITER);
begin_var;
skip_to_chars("'");
string windSpeed = end_var; // extracts windSpeed=”18”
// wind direction
skip_to_text(",", true); skip_to_text(",", true); skip_chars(DELIMITER);
begin_var;
skip_to_chars("'");
string windDirection = end_var; // extracts windDirection=”ENE”
// precipitation
skip_to_text(",", true); skip_chars(DELIMITER);
begin_var;
skip_to_chars("'");
string precipitation = end_var; // extracts precipitation=”80”
// humidity
skip_to_text(",", true); skip_chars(DELIMITER);
begin_var;
skip_to_chars("'");
string humidity = end_var; // extracts humidity=”85”

While Control Statement:
The while control statement is used to conditionally execute a single statement or compound statement
(enclosed in {}). In the following code, the statement contained between {} will be executed repeatedly
until the string variable sky is empty.

When the string variable sky becomes empty, control will pass to the code following the while statement.

 string sky = ".";
 while (sky)
 {

sky = "";
...

 }

If Control Statement:
The if control statement is used to conditionally execute a single statement or compound statement (en-
closed in {}). In the following code, the statement contained between {} will only be executed if the
string variable sky is non-empty.

if (sky)
{

 add_day;
}

Adding the Obtained Variables into PocketWeather
Now we have five weather variables with new values. We now need to transfer this data into the Pock-
etWeather program.

This is done as follows:

add_day;
This function doesn’t take any parameters but assumes that the variables like tmprHi, tmprLo and sky
have the correct values. The complete list of the variables used in add_day function will be described be-
low.

Now we can do the same for each day by repeating the while loop:

Additional Examples
The following additional examples were not covered in the tutorial:

Map Variables
The following code shows an example definition of a map variable skyMap. The key_value function is

used to associate a string value (2nd arg) with a given string key value (1st arg). Thus the string value
“13” is associated with the string key value “1”.

map skyMap
{

key_value("1", "13");
key_value("2", "13");

...
key_value("47", "28");
key_value("48", "14");

};
Later in the code we see the following statement:

sky = skyMap[sky];

The string variable sky is set up earlier. The value is now converted using the skyMap definition.

Checking for Today’s Weather
There’s one problem that should be mentioned. Some weather sources may provide expired data for yes-
terday. In order to skip such forecasts we can use this additional code:

string foundToday = ""; // false
string dayOfWeek = "";
begin_var;
skip_to_chars(".");
dayOfWeek = end_var;
if (!foundToday)
{

if (is_today(dayOfWeek))
{

foundToday = "."; // true
}

}
Declare a string variable foundToday, initialized to empty. Once the program finds a valid forecast for
today, this variable gets the non-empty value, which also means “true”

We check if foundToday is not empty (an empty string in the template language returns “false” itself
as well) and if it is we also check if the obtained value of dayOfWeek matches the current day (this is per-
formed by means of the is_today function). If it doesn’t match, then foundToday will remain empty
and the dayOfWeek value will be incorrect. In this case the obtained day information will not be added,
that’s why we should add the following code in the end of the while-section:

if (foundToday)
{

if (sky)
add_day;

}

User Reference Guide

Functions
The program consists of one main function:

main
{
…
}

This is the program entry point. All variable declarations, function calls and other statements must be
placed inside the main function.

There are a number of built-in functions:

add_day begin_var end_var get_file_name get_day
go_start is_today open_url select_area skip_tags
skip_to_tags skip_to_text_between_tags skip_to_text skip_chars
skip_to_chars IsImageURLEnabled

Each function will be defined in later sections. main is the only user-defined function. Function calls are
Pascal-like: if a function has no arguments, the brackets are not allowed. Examples of function calls:

skip_to_text(“www”, true); // function with 2 arguments
string str = end_var; // function call with no arguments
add_day; // function call with no arguments

Data Types
There are 4 data types: bool (constants only), string, map and pointer.

Bool
bool constants (true/false) are passed as parameters to the skip_to_text and
skip_to_text_between_tags functions.

String
string constants are contained in double quotes: “My String”. String variables are declared
as follows:

string strDay = “Monday”; // string declared with initial value
string strText; // string declared with no initial value

If a string constant contains the double-quote (”) character, it must be preceded with the back-
slash symbol in the code: “My name is \”Peter\””. If the string contains the backslash (“\”)
character, it should be doubled: “c:\\users\\johnsmith”.

Map
map variables are defined as a number of key-value pairs each of which defines the mapping a
string key to a new value. For example, to map “sunny” to “1”, “rainy” to “2” and “cloudy”
to “3” you define a map variable as follows:

map mySkyMap
{

key_value(“sunny”, “1”);
key_value(“rainy”, “2”);
key_value(“cloudy”, “3”);

};
After this declaration the following code is valid:

string strSky = “rainy”;
string strSkyCode = mySkyMap[strSky];

The strSkyCode variable will get the value “2”.

Pointer
pointer variables exists to mark an area of html data. This will be described with the
select_area function.

Variable Scope
The scope of a variable declaration is local to the operational block in which the variable is defined. Ex-
ample:

string str = “alpha”;
if (str)
{
string strOne = “one”;
if (strOne)
{

string strTwo = str + “ - ” + strOne; // VALID
 }
}
string strThree = str + strTwo;// INVALID: strTwo is out of scope

Expressions
An expression in the CWF language uses a combination of string values and operators to yield a string
result. The following elements are supported:

• string constants (e.g. “sunny”)

• string variables (e.g. strSky)

• map variables (e.g. mySkyMap[strSky])

• assignment operator “=” (e.g. strSky = “Sunny”)

• concatenation operator “+”

• negation operator “!”

• equality operator “~”

• inequality operator “$”

• round brackets “(“ and “)”;

The precedence of operators is as follows (from highest to lowest):

priority 4: []
priority 3: !
priority 2: +
priority 1: ~ $

The concatenation “+” operator takes 2 string arguments and returns the string concatenation of the

2nd argument to the first. Example:

string strA = “123”;
string strB = “321”;
string strC = strA + strB;

The strC variable is assigned the value “123321”.

The negation “!” operator takes one string argument. If the argument is an empty string, it returns a
non-empty string result (“.”). If the argument is a non-empty string, it returns an empty string result.
Examples:

string str1 = “one”;
string str2 = !str1;

Then str2 variable is assigned the empty string value “”.

string str1 = “”;
string str2 = !str1;

Then str2 variable is assigned the non-empty string value “.”.

The equality “~” operator compares strings. It takes 2 string arguments. If the arguments are equal
strings then it returns a nonempty string result (“.”). If the arguments are not equal then it returns an
empty string result.

The inequality operator “$” works like the equality “~” operator but returns the opposite result.

Round brackets allow you to override the operator precedence. Example:

string strName = “my name”;
string strOne = “111”;
string strTwo = “two”;
map myNumberMap
{

key_value(“one”, “111”);
key_value(“two”, “222”);

};
string str = strName + (“333“ $!(strOne + myNumberMap[strTwo]));

The order of execution is as follows:

myNumberMap[strTwo] will return “222”,
strOne + myNumberMap[strTwo] will return “111222”,
!(strOne + myNumberMap[strTwo]) will return “” (empty string),

“333” $ “” will return “.” (“333” is not equal to “”),

strName + “.” is “my name.”. The value of the whole expression is “my name.”.

Statements
There are two control statements in the CWF language: if (without else) and while. They take the
value of string expression to control the execution of the following single statement or compound state-
ment (enclosed by {}). A non-empty string expression value is considered true. An empty string value is
considered false. Examples:

string str = “one”;
if (str)
{
// this code executes

}
string a = “12”;
if (a + “3” ~ “123”)
a = “yes”; // this statement executes

string strCounter = “”;
while (strCounter $ “aaaaa”)
{
// this code will be executed 5 times
strCounter = strCounter + “a”;

}

Comments
Comments can be included preceding the comment text by two “/” characters. The example code above
includes comments.

Stages of Execution of a CWF

Specify Location
In order to extract weather data for a specific location, the predefined CityCode global variable must be
defined. The CityCode variable will contain the appropriate code (existing in the PocketWeather data-
base) to identify this location in the chosen weather source. The maximum length of the custom city code
is 30 characters, case is any.

Load Weather Data to Parse
When the main function starts its execution, it has no data to parse. The data needs to be download from
the web site via open_url function. It takes two arguments: the URL address and method (“GET” or
“POST”). See the detailed description below.

How to Navigate Through the Data
Use the following functions: go_start, select_area, skip_to_text_between_tags,
skip_tags, skip_to_tags, skip_to_text, skip_chars, skip_to_chars (see below).

How to Extract Data
Use begin_var/end_var functions (see below).

How to Transfer Data to the PocketWeather Database
Call the add_day function (see below).

Built-In Functions
In the CWF language, those functions that have no arguments don’t require any brackets (moreover,
brackets are not allowed).

void debug_log;

This function turns on debug logging to the file “WeatherParser_log.txt” that will be placed in the root
folder of the Pocket PC. This is discussed in more detail in the debugging section at the end of this manu-
al.

open_url
void open_url(string strURL, string strMethod);

This function downloads the data from the site given by URL. It takes two arguments: URL (strURL) and
method (strMethod). Two methods are supported: “GET” and “POST”. If the method is “GET” the form
parameters are placed in the URL in a standard way. Example:

open_url(“http://www.my.weather-source.com/cgi-bin/forecast.cgi?CityID=” + CityCode
+

“&Forecast=10days”, “GET”);

If the method is “POST” the open_url function simulates a form submit. The form parameters should be
filled separately by several calls to form_param function (see the description below). The form paramet-
ers list exists until the call to open_url function which uses and then clears it. Example:

form_param("CityID", CityCode);
form_param("Forecast", "10days");
open_url(“http://www.my.weather-source.com/cgi-bin/forecast.cgi”, “POST”);

The open_url function supports up to 5 sequential redirects. If the received HTML contains the redirec-
tion to another URL then PocketWeather automatically opens this URL, and this operation is repeated up
to 5 times. If the redirections still persist, open_url fails.

If the open_url fails (it cannot download data from site) then the CWF execution stops with error.

If the open_url succeeds, the internal document is filled and the cursor starts at the beginning of the
document. After that the programmer can use the built-in functions to move the cursor forward or back-
ward.

form_param
void form_param(string strName, string strValue);

This function defines the form parameter that will be passed to the server in the next open_url function
call (useful if the method is “POST”). The function takes two arguments: strName and strValue – the
name and the string value of the form parameter. See the example above.

begin_var and end_var
void begin_var;
string end_var;

These functions obtain the data from the document.

Step 1. Move to the beginning of the data piece.

Step 2. Call begin_var function. This will remember the starting position in the document.

Step 3. Move forward through the data piece.

Step 4. Call end_var function. The function returns the trimmed string (without spaces at the start
and at the end) from the document starting with the position remembered in the step 2 and fin-
ished in the current position.

Example. The document contains the date; we want to get the day of month from here:

May 21, 1994.

Let the current position is before the beginning “M”. The following code will save the day of month
value into the strDay variable:

skip_to_chars(“0-9”);
begin_var;
skip_chars(“0-9”);
string strDay = end_var;

go_start
void go_start;

If an area of the document is already selected using the select_area function then the go_start func-
tion will reset the cursor to the beginning of the currently selected area. If the go_start function is used
within the context of a call to select a new area, then the go_start function selects the whole document
(downloaded in open_url function) as an area and moves the cursor to the very beginning of the docu-
ment.

select_area
void select_area(pointer startPtr, pointer finishPtr);

This function selects the area in the document to parse. All subsequent operators will operate within the
selected area and never leave it. To select the area the programmer should provide two variables of
pointer type and pass them to select_area. The pointer type variable is declared as follows:

pointer myPtrName
{

// insert some operations to move cursor to required position in text
skip_to_text(“data starts here”);

};

The select_area function works as follows.

Step 1. It executes the code block defined in the first pointer (typically the first function in the first
pointer is go_start, see below) and remembers the cursor position when it stops (position 1).

Step 2. Then it executes the second pointer from the position remaining after the first pointer and
remembers the cursor position when it stops (position 2).

Step 3. It temporarily bounds the document between position 1 and position 2 and moves the curs-
or to the position 1.

Example. The document is as follows:

I do not like Green Eggs and Ham
I do not like them
Sam, I am
I do not like them here or there
I do not like them anywhere
I do not like them in a boat
I would not, could not, with a goat
I will not eat them in the rain
I do not like them on a train
I do not like them in a box
I will not eat them with a fox
I do not like them in a house
I would not, could not, with a mouse
I do not like Green Eggs and Ham
I do not like them
Sam, I am
Green Eggs and Ham
Green Eggs and Ham
Don't like Green Eggs and Ham

The following code will bound the document between the end of the first verse and the end of the second
verse:

pointer myStartVerse2Ptr
{

go_start;
skip_to_text(“Sam, I am”, true);

};
pointer myFinish Verse2Ptr

{
skip_to_text(“with a goat”, true);

};
select_area(myStart Verse2Ptr, myFinish Verse2Ptr);

skip_tags
void skip_tags;

This function skips all subsequent HTML tags and spaces from the current cursor position and moves the
cursor to the beginning of the text after HTML tag and all subsequent spaces if any. Spaces between HTML
tags are also skipped. The function skips the whole blocks surrounded by <title>, <script> and <style>
tag pairs. The function moves the cursor forward while it finds spaces and HTML tags.

Important: before the call to skip_tags function the cursor should not be inside the HTML tag or any
text except spaces.

skip_to_tags
void skip_to_tags;

This function skips the text from current cursor position to the beginning of the HTML tag (“<” character)
if any. If no tag is found then the cursor moves to the end of the document/area.

skip_to_text_between_tags
string skip_to_text_between_tags(string strText, bool bCaseSensitive);

This function looks for text surrounded by HTML tags. The search is either case sensitive or insensitive ac-
cording to bCaseSensitive argument. If the fragment is found, the cursor moves to the position before
the first HTML tag after the found text fragment, and the function returns a nonempty string (“.”). If the
fragment is not found then the cursor remains in the old position and the function returns an empty
string. The spaces (and also tabs and line breaks) on the beginning and on the end of the found text are
not taken into account.

Important: see the comment to skip_to_tags function.

Example:

The document is as follows:

<html>
<body>

This is a TEXT.

</body>
</html>

Let the cursor be situated before the “<body>” tag.

string strFound = “no”;
if (skip_to_text_between_tags(“this is a text.”, false))

strFound = “yes”;

The strFound variable will get a value “yes” and the cursor will move to the position before the
“” tag.

skip_to_text
void skip_to_text(string strText, bool bCaseSensitive);

This function looks for given text from current cursor position. The search is either case sensitive or in-
sensitive according to bCaseSensitive argument. If the text is found then the cursor moves to the END of
the found fragment, else it doesn’t move.

skip_chars
void skip_chars(string strCharset);

This function skips the symbols of given character set from the current cursor position. The character set
is defined in Perl-style: symbol intervals (“A-Z”), symbols enumeration (“QWERTY345”) and the negation
(“^”). Examples:

“A-Z” – capital letters of the Latin alphabet.

“0-9” – digits.

“a-z0-9” – small letters and digits.

“^abc” – all symbols except “a”, “b” and “c”.

If the set contains a minus (“-”) character the symbol should be preceded with a DOUBLE backslash sym-
bol: “\\-”. If the set contains the backslash symbol, it should be copied 4 times: “\\\\”.

This function moves the cursor forward until it reaches the character NOT belonging to the given set. The
function stops before this character or at the end of the document/area.

skip_to_chars
void skip_to_chars(string strCharset);

This function moves the cursor forward until it reaches the character belonging to the given set. The
character set is defined as in the skip_chars function. i.e. skip_to_chars(“0-9”) is the equivalent to
skip_chars(“^0-9”).

get_file_name
string get_file_name(string strPath);

This function extracts the file name without extension from the full path or URL. Examples:

string str = get_file_name(“http://aaa.bbb.ccc/dir/subdir/1234.html”);

The str variable will get the value “1234”.

string str = get_file_name(“c:\\windows\\win.ini”);

The str variable will get the value “win”.

If the function cannot extract the file name it returns an empty string.

is_today
string is_today (string strDay);

The function handles the strDay parameter of one of two possible formats: 1) an English name of the day
of week (case is not important) or 2) a decimal number with the day of month.

If the day of week or the day of month coincides with the current date, the function returns a nonempty
string (“.”), otherwise it returns an empty string.

Example: today is Tuesday, 8th of February, 2005.

is_today(“wednesday”);
Returns empty string. And both

is_today(“8”);
and

is_today(“tuesday”);
will return “.”.

get_day
string get_day(string strDayIndex);

The function returns the day of the YEAR from today by the given number of days. The number of days is
given by the length of the strDayIndex parameter.

Example: let today is Tuesday, 8th of February, 2005. The day of the year is 8 + 31 = 39. The function
call

get_day(“...”);
will return “42”.

IsImageURLEnabled
string IsImageURLEnabled (string strAutomaticImageNumber);

The function handles the strAutomaticImageNumber parameter as a decimal number with the automat-
ic image number.

See “imageURLx” variable below.

The “imageURLx” variable enables the script to automatically configure downloadable
images/maps for a specific location based on the weather template. If the user decides to dis-
able this image in PW Options, then the “IsImageURLEnabled” function allows the script to decide
at runtime whether to process a section of code – for example, to avoid downloading another
URL to access the image URL.

IsImageURLEnabled(“0”);
returns empty string if the previously added automatic image URL has been disabled. If it is still
enabled, then it returns “.”.

add_day
void add_day;

The function doesn’t take arguments but requires several local variables described below. The variables
should be visible in the scope of this function.

Variable Description

month the month. Not required (if no such variable present then the
days/months are added subsequently from today to the future).

dayOfMonth a day of month. Not required (if no such variable present then the
days are added subsequently from today to the future).

hour the hour of the day. Not required (if no such variable present then the
hour for weather is not specified and the weather is considered as a
whole day weather).

taf the universal packed weather information (see
http://www.hut.fi/u/stoivane/metar/#presentWeather) which contains
the sky condition, precipitation, wind speed and direction. Not
required (if no taf variable then the sky and windXXX variables are
used).

sky the sky condition. Must be an integer number between 0 and 30. The
possible values for the sky variable and their meanings can be found
below.

skyTextID the sky condition. Must be an integer number. The possible values for
the skyTextID variable and their meanings can be found below. Note
that if the template does not provide this variable, it is automatically
inferred from the sky variable above.

tmpr (tmprHiand
tmprLo)

the temperature (an integer number). If there is no tmpr variable
then tmprHi and tmprLo are used (highest and lowest temperature).

tmprUnits the temperature units. Must be one of these values: “C” (Celsius), “F”
(Fahrenheit) and “K” (Kelvin) (case is not important).

dewPoint the dew point temperature (related to humidity)

humidity the humidity % (related to dewPoint)

precipitation the precipitation probability %

visibility the visibility.

visibilityUnits The visibility units (feet, inches, nautical miles, millimeters, meters,
miles, kilometers)

pressure the barometric pressure.

pressureUnits the barometric pressure units. Must be one of these values: “hPa”,
“mm” (mmHg), “mb” (mBar) (case is not important).

windSpeed the wind speed.

windGustSpeed the maximum wind speed.

windSpeedUnits the wind speed units. Must be one of these values: “kt” (knots),
“mps” (meters per second), “kph” (kilometers per hour), “mph”
(miles per hour) (case is not important).

windDirection the wind direction. Can be either an angle (0-360) or a letter

http://www.hut.fi/u/stoivane/metar/#esentWeather

Variable Description

abbreviation: N, NNE, NE, ENE, E, ESE, SE, SSE, S, SSW, SW, WSW,
W, WNW, NW, NNW (case is not important).

userText0 -
userText9

user text (0-9)

alertText0 -
alertText3

alert text (0-3).

forecastUserText forecast data specific user text.

rainfallUnits The received rainfall amount (historical) units (feet, inches, nautical
miles, millimeters, meters, miles, kilometers)

rainfall The received rainfall amount (historical)

rainfallDays The number of days with precipitation >= 1mm

sunshineHours The average number of hours of sunshine per day (historical)

uvIndex The UV (sun strength) index

imageURL0-3 If the weather template is able to automatically extract suitable
weather image/maps URL/addresses, then setting these variables will
cause PocketWeather to automatically update the URL, and download
these images.
See “IsImageURLEnabled”

Sky Conditions
The following table describes the 31 sky conditions which can be set using the sky variable described
above. If the hour variable is specified and is after dark any sky conditions will automatically be conver-
ted to their night equivalent if a day value has been specified.

Index Sky description Icon Index Sky description Icon

0 Unknown 21 Haze

1,2 Rain_And_Wind 22 Smoke

3,4,17 Thunderstorm 23 Windy

5 Rain_And_Snow_Mix 24 Very_Windy

6,18 Sprinkles 25 Frigid

8 Freezing_Drizzle 26 Cloudy

9 Drizzle 27 Night_Cloudy

10 Freezing_Rain 28 80_Clouds

11 Light_Rain 29 Night_80_Clouds

12 Rain 30 50_Clouds

13 Light_Snow 31 Night_50_Clouds

14 Medium_Snow 32 Clear

15 Snowing 33 Night_Clear

16 Snow 34 High_Cloud

19 Dust 36 Hot

20 Fog 37 Scattered
Thunderstorms

39 Scattered Rain

SkyTextID Conditions Text
The following table describes the sky conditions which can be set using the skyTextID variable described
above.

Index Sky description Index Sky description Index Sky description

0 Unknown 64 Isolated
Thunderstorms/Wind 146 AM Light

Snow/Wind

1 Cloudy 65 Rain/Snow 147 Scattered Snow
Showers/Wind

3 Mostly Cloudy 66 Scattered
Thunderstorms/Wind 150 PM Light Rain/Wind

4 Partly Cloudy 67 Am Showers/Wind 152 AM Light Wintry Mix

11 Clear 70 Scattered Snow Showers 153 PM Light
Snow/Wind

13 Light Rain 71 Snow to Ice/Wind 154 Heavy Rain/Wind

14 Showers 73 Light Snow Later 155 PM Snow Showers

15 Showers Early 75 Light/Freezing Rain 158 Snow to Rain/Wind

16 Showers Late 77 Snow to Rain 163 Rain/Sleet

18 Rain 78 Snow Showers Early 164 PM Light Rain/Ice

19 AM Showers 80 AM Light Rain 167 AM Snow

20 Scattered Showers 81 PM Light Rain 171 Snow to Ice

21 Few Showers 82 PM Rain 172 Wintry Mix/Wind

22 Mostly Sunny 84 Snow Showers 173 Strong Storms

23 Mostly Clear 85 Rain to Snow 175 PM Light Snow

24 Sunny 86 PM Rain/Snow 178 AM Drizzle

25 Scattered Flurries 88 Few Showers/Wind 183 Snow
Showers/Wind Early

26 AM Cloudy / PM Sun 89 PM Snow/Wind 189 Strong Storms/Wind

27 Isolated Thunderstorms 90 Snow/Wind 193 PM Drizzle

28 Scattered Thunderstorms 91 PM Rain/Snow Showers 194 Drizzle

29 PM Showers 92 PM Rain/Snow/Wind 201 AM Light Rain/Wind

30 PM Showers/Wind 93 Rain/Snow Showers/Wind 202 PM Wintry Mix

31 Rain/Snow Showers 94 Rain/Snow/Wind 204 AM Rain/Wind

32 Few Snow Showers 98 Light Snow 223 Wintry Mix to Snow

33 Cloudy/Wind 100 PM Snow 231 Rain

34 Flurries/Wind 101 Few Snow Showers/Wind 236 Ice to Rain

35 Mostly Cloudy/Windy 103 Light Snow/Wind 259 Heavy
Rain/Freezing Rain

36 Rain/Thunder 104 Wintry Mix 271 Snow
Showers/Windy

37 Partly Cloudy/Windy 105 AM Wintry Mix 988 Partly Cloudy/Windy

38 AM Rain/Snow Showers 106 Heavy Rain/Freezing Rain 989 Light Rain Showers

39 Showers/Wind Late 107 Snow Showers Later 990 Light Rain with

Index Sky description Index Sky description Index Sky description

Thunder

40 Light Rain/Wind 108 AM Light Snow 991 Light Drizzle

41 Showers/Wind 109 Snow 992 Mist

42 Cloudy then Clear 114 Rain/Freezing Rain 993 Smoke

43 Thunderstorms and
Showers 118 Thunderstorms/Wind 994 Haze

44 Mostly Sunny/Windy 123 Sprinkles 995 Light Snow Showers

45 Flurries 125 AM Snow Showers 996 Light Snow
Showers/Windy

46 Mostly Clear/Wind 126 AM Clouds/PM Sun/Wind 997 Clear

47 Rain/Wind 127 Rain/Snow Showers Later 998 A Few Clouds

49 Scattered Flurry/Wind 128 AM Rain/Snow/Wind 999 Fair

50 Scattered Strong Storms 130 Rain to Snow/Wind 1000 Strong Winds

51 PM Thunderstorms 132 Snow to Wintry Mix 1001 Strong
Thunderstorm

52 Thunderstorms Early 133 PM Snow Showers/Wind 1002 Funnel Cloud

53 Thunderstorms 135 Snow and Icon to Rain 1003 Tornado

55 Sunny/Windy 137 Heavy Rain 1004 Tornado in the
Vicinity

56 AM Thunderstorms 138 AM Rain/Ice 1110 Tropical Storm

57 Thunderstorms Later 140 Heavy
Thunderstorms/Wind 1111 Cat. 1 Hurricane

62 AM Rain 142 Rain/Thunder/Wind 1112 Cat. 2 Hurricane

63 Scattered Showers/Wind 145 Am Snow Showers/Wind 1113 Cat. 3 Hurricane

1114 Cat. 4 Hurricane

1115 Cat. 5 Hurricane

CWF Development Tool
A simple PC tool is provided to assist CWF development. An existing CWF file can be selected in the tool
using a browse button.

Edit
An Edit button opens the selected CWF file into an Edit window where the CWF definition can be edited
and saved.

Save, Save As
Save and Save As buttons enable a modified CWF file to be saved.

Run
A Run button causes the CWF to be compiled and if successful to be executed.

Close
A Close button causes the CWF tool to exit.

Compilation
When the CWF is compiled any errors are reported in a report window as an error message and the line at
which the error occurs. The line containing the error (or the following line) is highlighted in the edit win-
dow. The following errors are possible:

Message

Unrecognized symbol found

“;” expected

“{“ expected

“}” expected

“(“ expected

“)” expected

“[“ expected

“]” expected

Boolean constant expected

String constant expected

Identifier expected

Undeclared identifier

“,” expected

Syntax error

Debugging
In order to debug execution of the CWF to parse the HTML data, debug information is also directed into
the report window. Debug information is recorded for most functions:

 String variable assignment.

 Each open_url function call.

 HTML text navigation functions. The 50 characters following the current cursor position in
the HTML text are shown.

 Each add_day function call.

Below is an extract from a typical example of a debug log from a successful CWF.

open_url("http://www.bbc.co.uk/weather/5day.shtml?id=3203", "GET")
sky = "."
foundToday = ""
tmprUnits = "C"
windSpeedUnits = "mph"
pressureUnits = "mb"
dayOfWeek = "Wednesday"
foundToday = "."
sky = "3"
sky = "4"
tmprHi = "2"
tmprLo = "0"
windDirection = "NE"
windSpeed = "13"
pressure = "1016"
humidity = "74"
add_day
...
dayOfWeek = "Sunday"
sky = "3"
sky = "4"
tmprHi = "5"
tmprLo = "-2"
windDirection = "NE"
windSpeed = "12"
pressure = "1026"
humidity = "68"
add_day
dayOfWeek = ""
sunrise = ""
sunset = ""
sky = ""
sky = ""
sky = "0"
tmprHi = ""
tmprLo = ""
windDirection = ""
windSpeed = ""
pressure = ""
humidity = ""

	Overview
	Files and Folders
	File Content

	Custom Weather Feed Language Tutorial
	main Function
	Obtaining the Html Data From the URL Address
	Extracting data from the Html Text
	Selecting an Area of the HTML Data
	Getting the Weather Forecast for Each Day
	While Control Statement:
	If Control Statement:
	Adding the Obtained Variables into PocketWeather

	Additional Examples
	Map Variables
	Checking for Today’s Weather

	User Reference Guide
	Functions
	Data Types
	Variable Scope
	Expressions
	Statements
	Comments
	Stages of Execution of a CWF
	Built-In Functions
	Sky Conditions
	SkyTextID Conditions Text

	CWF Development Tool
	Compilation
	Debugging

